

MINGDA FDM Printing Material Technical Data Sheet

A	<i>A</i> I	N	S	n	٨	Λ	R	S-	Ŀ	16
r	41	I١	ı	u	м		D	э-	•г	16

High-speed print ABS material

产品优势

Product Advantages

- High liquidity
 ABS-HF has high liquidity and supports 200mm/s printing speed.
- Low Warpage
 ABS-HF has low insulation requirements, and printing on an open printer can also maintain better adhesion with the bottom plate.

产品描述

Product Description

MINGDA ABS-HF is a MINGDA Odorless ABS for high-flow modification ABS consumables. It retains low smells and supports higher printing speeds. At the same time, it has better resistance to warning and excellent impact resistance.

产	묘	详'	봄
	пп	-	ш

Available

Color: 纯色 Natural/黑色 Black

Line diameter: 1.75mm

Net weight: 1KG

物性表

Material Properties

测试项目	测试方法	典型值	
Property	Testing method	Typical value	
密度	ICO 1102	1.05g/cm³	
Density	ISO 1183		

玻璃化转变温度 Glass transition temperature	ISO 11357	80℃	
熔融指数	250℃,2.16kg	13g/10min	
Melt index			
维卡软温度	ISO 306	/ ℃	
Vicat softening temperature	100 000		
热变形温度	ISO 75: Method A	65℃ (1.8MPa)	
Determination of temperature	ISO 75: Method B	72℃ (0.45MPa)	
拉伸屈服强度(X-Y)		37.13±0.59MPa 2.32±0.07%	
Tensile yield strength			
拉伸屈服伸长率(X-Y)			
Tensile Yield elongation			
杨氏模量(X-Y)	100 507	2115.10 ± 24.02MPa	
Young's Modulus	ISO 527		
拉伸断裂强度(X-Y)		30.29 ± 2.28MPa	
Tensile breaking strength			
断裂伸长率(X-Y)		3.65±1.52%	
Elongation at break			
拉伸断裂强度(Z)		33.48 ± 0.23MPa	
Tensile breaking strength			
杨氏模量(Z)	ISO 527	2097.03±37.77MPa	
Young's Modulus	150 321		
断裂伸长率(Z)		4.07±0.57%	
Elongation at break			
弯曲强度(X-Y)		57.46 ± 0.25MPa	
Bending strength	ICO 170		
弯曲模量(X-Y)	ISO 178	2117.02 ± 32.46MPa	
Bending Modulus			
缺口冲击强度(X-Y)	100 150	23.16 ± 2.32KJ/m²	
Charpy impact strength	ISO 179		

试样打印参数: 喷嘴大小 0.4mm, 喷嘴温度 250℃, 底板加热 80℃, 打印速度 50mm/s, 填充率 100%, 填充角度±45°

Specimens printed under the following conditions: Nozzle size 0.4mm, Nozzle temp 250°C, Bed temp 80°C, Print speed 50mm/s, Infill 100%, Infill angle ±45°

建议打印参数

Recommended printing conditions

喷头温度	230-250°C	
Nozzle temperature	230-230 C	
建议喷嘴大小	≥0.2 mm	
Recommended nozzle diameter		
建议底板材质	玻璃、PEI 膜或 PC 膜	
Recommended build surface	Glass、PEI Film or PC Film	
底板温度	70-80°C	
Build plate temperature	70-80°C	
Raft 间距	0.2-0.22mm	
Raft separation distance	U.Z-U.ZZMM	
冷却风扇	0-50%	
Cooling fan speed	U-3U%	
打印速度	20, 200/-	
Print speed	30-200 mm/s	
回抽距离	1.2	
Retraction distance	1-3 mm	
回抽速度	1000 2/00/	
Retraction speed	1800-3600 mm/min	
建议支撑材料		
Recommended Support Material	/	

Additional Suggestions:

- 1. Turn on the unused filaments that have not been used for a long time. If the phenomenon of bubbles drawing bubbles during the printing process is found during the printing process, please put the wires at 70° C for 4-6h.
- 2. It is recommended to place the printer in a ventilated environment when printing.